Detection of Outliers and Patches in Bilinear Time Series Models
نویسندگان
چکیده
We propose a Gibbs sampling algorithm to detect additive outliers and patches of outliers in bilinear time series models based on Bayesian view. We first derive the conditional posterior distributions, and then use the results of first Gibbs run to start the second adaptive Gibbs sampling. It is shown that our procedure could reduce possible effects on masking and swamping. At last, some simulations are performed to demonstrate the efficacy of detection and estimation by Monte Carlo methods.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملControl chart based on residues: Is a good methodology to detect outliers?
The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts when they are applied to res...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملDetection of Outlier Patches in Autoregressive Time Series
This paper proposes a procedure to detect patches of outliers in an autoregressive process. The procedure is an improvement over the existing detection methods via Gibbs sampling. We show that the standard outlier detection via Gibbs sampling may be extremely ine cient in the presence of severe masking and swamping e ects. The new procedure identi es the beginning and end of possible outlier pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010